
© 2011 California Institute of Technology B-1

Case Study
Part B

Sizing the System

Software Cost Estimation

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. © 2011 California Institute of Technology. Government sponsorship

acknowledged.

© 2011 California Institute of
Technology

B-2

Sizing the System

The purpose of this exercise is to generate a size estimate
for a hypothetical software project for the purposes of
generating a cost estimate

© 2011 California Institute of
Technology

B-3

Sizing the System

In this exercise, we will:

1. Measure the size of reference code to be used in the
size estimation process

2. Estimate the amount new code development, reuse, and
modification

3. Generate a probabilistic estimate of equivalent size for
the new software project

© 2011 California Institute of
Technology

B-4

Project Description

1. JPL is developing flight software (FSW) for a flight project. It is a telecom system that
can be reused by landers and rovers for communicating with earth.

2. The flight software’s can be divided into four primary function: monitoring data , data
transfer, command and control, and relay communication.

3. The telecom system has some design heritage with an existing telecom system that
has been developed. There is a small amount of code inheritance. All new code
developed will be in C.

4. A software development environment including a test-bed exists.
5. The software is nearing its preliminary design review (PDR). The software must be

delivered to ATLO in 16 months (64 weeks), with a small, though experienced (3 years
C experience, but very little experience in the development tools), development staff.

6. Requirements are immature, therefore 10-20% requirement volatility is expected.
7. There is concurrent HW development. The HW is being developed by a contractor in

another state.
8. This will be mission class B (Mission Critical) software.
9. The project is currently budgeted at 54 WM. IV&V is paid for at the project-level, and

the cost of maintenance does not need to be included.

This example of a JPL software development project is loosely based on a real project. It is meant to illustrate the basic steps of developing
a software estimate. It is not intended to serve as a source for answers to all questions that may arise regarding software estimation.

© 2011 California Institute of
Technology

B-5

Part 1 – Measure Reference Code Size

The first step in the sizing process is to identify and
measure the size of reference (analogy) code

In this exercise, we will use the JPL SLiC code counter to
measure the size of four different software functions that
have been identified as reference modules:

1. Monitor Data (Function W)
2. Data Transfer (Function X)
3. Command and Control (Function Y)
4. Relay Communication (Function Z)

© 2011 California Institute of
Technology

B-6

Count Reference Code

Note: Sample code (Functions W,X,Y,Z) has been loaded on the training PCs
for this example

1. Double-click on the ‘Cygwin’ desktop icon
2. Enter: cd example_data at the prompt and press

‘ENTER’ to move to the folder with the example data

© 2011 California Institute of
Technology

B-7

Count Reference Code (cont’d)

At this point, you are in the example_files folder, which contains sub-
folders containing our sample reference code:
– example_w
– example_x
– example_y
– example_z

To verify that you are in the correct location, type ls –l at the prompt
and press ENTER. You should see a window similar to below:

© 2011 California Institute of
Technology

B-8

Count Reference Code (cont’d)

Now that we are in the root folder (with all reference
code below us), let’s perform a count of all source:

$./slic –t

30,600 logical
SLOC in
Functions
W,X,Y,Z

By default, SLiC automatically finds and counts all supported source code under the current path

© 2011 California Institute of
Technology

B-9

Count Reference Code (cont’d)

The next step is to
count at the first
subfolder level

This command
shows the SLOC
totals for each
function (folder):

$./slic –-output-depth=1

The output-depth option displays
totals (totaled recursively) at

depth d relative to the current (or
explicitly specified) path

© 2011 California Institute of
Technology

B-10

Compute Total SLOC
• Compute Total SLOC based on

– Monte Carlo Simulation

• Step 1: Open MonteCarloSizing Tool (On Desktop in folder named “QSM” and [today’s
date]

• Step 2: Enter Size numbers from previous slide into tool in historical
column

• Step 3: Scale your software size to the reference sizes
• Step 4: Run Monte Carlo Simulation
• Step 5: Save your results for the next exercise

This column
contains the

logical SLOC we
estimated from

SLiC

© 2011 California Institute of
Technology

B-11

MonteCarloSizing Tool

• Excel-based tool to help you with your analogy size
estimates

• Incorporates uncertainty by allowing distributional inputs
• Choose between point estimates, uniform inputs (Low

and High), or triangular inputs (Low, Most Likely, and
High)

• Uses Monte Carlo techniques to aggregate size and
compute total equivalent size

• Can choose number of iterations per Monte Carlo run –
9,999 iterations is recommended

• Other features: Function Point Calculator that allows
distributional inputs for uncertainty

© 2011 California Institute of
Technology

B-12

Scaling the Software Size
• Estimate Size Distribution parameters

– Convert to logical lines if needed
– Derive ML based on analogous functions from completed software

systems
– Adjust estimate for differences between current fn and analogous fn
– Estimate low and high estimates based on best and worst case scenarios

and document basis of estimate

Read the
basis of

estimate to
fill in

missing size
estimates

© 2011 California Institute of
Technology

B-13

Sample Size Analogy Inputs

Choose between point estimates, uniform inputs (Low and High), or triangular
inputs (Low, Most Likely, and High)

© 2011 California Institute of
Technology

B-14

MonteCarloSizing Tool Output

• MonteCarloSizing
Tool outputs a
Low, Most Likely,
and High
Equivalent Size
estimate

• Save your results
for the next
exercise

Note: Output numbers will vary slightly due to
randomness of draws

